Monitoring Equipment

Internal Corrosion Enhance Co **Internal** Corrosion Specialis

37th Annual Meeting Tom Pickthall

CORROSION ASSOCIATION

EST. 2022

Why am I doing this?

To develop a representative monitoring program that indicates internal corrosion rates of the system.

"If something is going to happen, it's going to be in the worst location at the worst possible time."

Where Do I Begin?

Regulated or Non- Regulated Line?	Monitoring Location (Top, Middle, Bottom)	Material Type (Standard or Specialty Alloy)		Type of Process Connection: Flanged or Threaded?		Process Connection Size/Access Va	ı alve
ANSI Rating (150, 300, 600, etc.)	Size of Pipeline (inches)	Working PSI/MAOP		Velocity of Product Line		Working Temp/Max Ter	np
	Produc (Liquids oth	et Type s, Gas, er)	Sweet Serv	or Sour ⁄ice?			

Methods of Monitoring

Corrosion Coupons	Retractable Coupon Holders	Liquid Samplers	Fixed (Plug Mounted) Coupon Holders	Electrical Resistance (ER) Probe
Linear Polarization Resistance (LPR) Probe	Galvanic Probe	Pipeline Monitor	Gas Sampling	In Line Inspection
		Alternative Methods (Coupled Multi-array Sensor, High Sensitivity ER, etc.)		

Corrosion Coupons

Advantages

- Easy to Use
- Allows Examination
- If located properly, very representative of system

Disadvantages

- Long time needed to collect data
- Time consuming
- If not located properly NOT

representative of system

• Inexpensive

5

Retractable Coupon Holders

Advantages

Provide a safe and easy method of inserting and removing coupons from systems under pressure

Can be hand inserted in low-pressure systems or used with EnhanceCo Retrieval Tools at higher pressures.

construction, bleed valves, safety chains and triple safety locks provide operator and pipeline safety while eliminating the possibility of over withdrawal.

Rugged stainless steel

These tools allow you to insert and withdraw coupons without disturbing or shutting down the system.

- Retractable Coupon Holders need to be retracted during pigging operations
- Removal
- Non-continuous reading

Liquid Samplers

Advantages

- Low Spot to collect water
- Don't have to shut in the system
- Liquid Samples, Bacteria and

ocation

- No Flow
- Easy to fill with solids
- Can have exposure to fluids

Fixed (Plug Mounted) Coupon Holder

Advantages

- Simple and easy to use
- Low cost

- Locations can be limited
- Shut down of system required
- Depressurization is required

Electrical Resistance Probes

Advantages

- Great for Monitoring General Corrosion
- Reduces Personnel Exposure to Pressures and Product
- Allows for Continuous Monitoring

- Difficult to use in a system with solids
- Doesn't detect pitting very well
- Requires additional equipment to retrieve data
- Data acquisition requires a power source (battery or 4-20 mA connection)

Linear Polarization Resistance (LPR) Probe

Advantages

- Detects Fluctuations
- Directly gives an instantaneous Corrosion Rate in mils per year (MPY)
- Can be used to indicate pitting

Disadvantages

Difficult to use in a system with solids

Requires additional equipment to retrieve data

<u>·</u>

Data acquisition requires a power source (battery or 4-20 mA connection) Limited to electrolytically conducting liquids

Galvanic Probe

Advantages

- Easy to use
- See changes rapidly
- Excellent for detecting Oxygen ingress
- Easy to maintain and very field friendly

- Does NOT give corrosion rate
- Elements can become fouled
- Data needs some interpretation

Pipeline Monitor

Advantages

It allows the use of multiple methods in one location

It creates a worst- case scenario in an accessible location

Provides data on how potentially corrosive the system could be.

Provides a method of monitoring product quality

Disadvantages

- Usually require Management of Change (MOC) in order to be installed
- Requires maintenance to ensure representative data is being collected
- Requires an understanding of the

system

Pipeline Monitor

Direct Measurements

IN LINE INSPECTIONS

ULTRASONIC THICKNESS INSPECTIONS

CUT OUTS AND TIE INS

In Line Inspection

Things to Watch Out For....

Additional Alternative Methods

- Coupled Multi-Array Sensor (CMAS)
- High Sensitivity ER
- Ultrasonic Thickness
- Structured Light Microscopy
- SEM/EDS
- XRD/XRF
- Field Water Chemistry

Structured Light Microscopy

Conclusions

LOCATION, LOCATION!

USE APPROPRIATE TOOLS

TECHNIQUES

MAINTAIN OUTSTANDING RECORDS

LOOK FOR TRENDS, **EXCURSIONS AND** UPSETS

UNDERSTAND THE SYSTEM!

Tom Pickthall tomp@enhanceco.net 281-499-4426 (Office) 713-906-4841 (Cell)

