Measurement And Monitoring of Chlorine Gas Emissions at Deep Well Anode Vent Tube Outlets

Jamey Hilleary – Elecsys, Division of Lindsay Corporation

LINDSAY

A Case Study in Monitoring Toxic Gases

Agenda

- Project introduction and background
- Equipment used
- Initial "conference room" proof of concept testing

- First field-testing deployment
- Second field-testing deployment
- Web data overview
- Subsequent field deployments
- Conclusions/Q&A

Introduction

- Deep well anode beds produce chlorine gas
- The emissions must be vented to prevent corrosion to the copper wiring and other metallic components
- A large landowner instituted a requirement for monitoring chlorine emissions from anode beds
- A project to develop a chlorine monitoring solution was started

Basic Anode Bed Diagram

- Anodes react with chlorides in the substrate
- Perforated vent tube pulls chlorine gas away from the anodes
- Gas emissions are vented to the atmosphere

Deep Well Anode Bed Vent Tube Cap Casing To Rectifier Anodes

Proof of Concept Testing Components Used in the Application:

Chlorine Gas Sensor 0-5 PPM (parts per million) 4-20mA signal output 2-Channel Monitor Cellular communication Battery or external power 4-Channel Monitor Cellular or satellite Modbus SCADA option

Proof of Concept Testing (continued)

Step One ("conference room demo"):

- Tested compatibility between the sensor and monitors
- Performed sensor calibration procedure
- Learned sensor will require periodic (2-3 times per year) recalibration
- Learned users will need the calibration kit for field use
 Step Two ("conference room demo"):
- Viewed and configured web data portal
- Sent test payload to the web
- Validated measurement accuracy

Field Testing and System Deployment

8

First field unit:

- 2-channel system
 - Battery powered
 - 4/5G cellular communication
- Perform initial field calibration procedure
 - Extended sensor "charge time" required

Second field unit

- 4-channel system
 - Externally powered (from rectifier power)
 - Satellite communication

First Field Test Installation

Preparing the sensor for installation

Connecting to the sensor 4-20mA output

First Field Test Installation

2-channel cellular monitoring system Sensor location (on post by vent tube)

Second Field Test Installation

4-channel satellite-based monitoring system

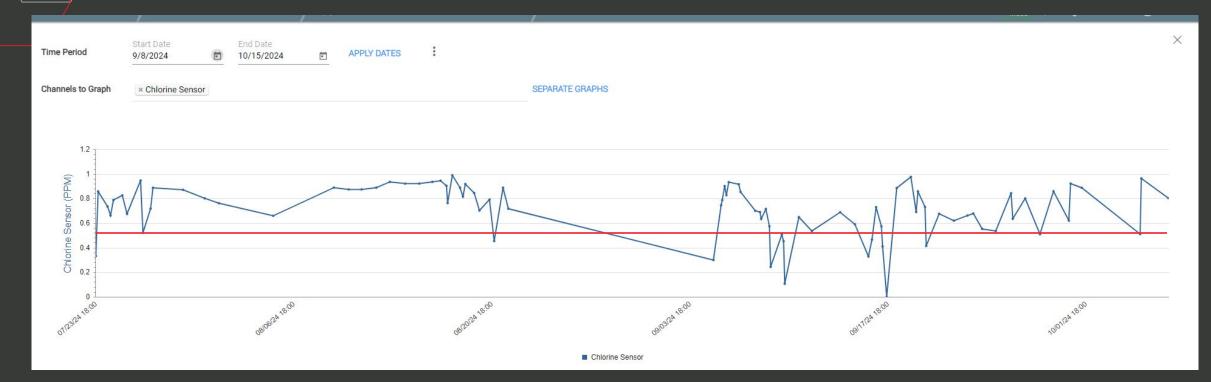
Sensor mounted next to the vent tube outlet

Web Portal Data View

		HISTORY AUDIT LOG
▲ Latest Site Measurements		11 Feb 2025 19:18 (13 Days Ago)
Description	Value	
Chlorine Sensor	0.70 PPM	12
Temperature	29 °C	le:
Signal Strength	-79 dB	<u>⊯</u>
RMU Battery	3.40 V	12

Web portal site view showing most recent data

12


Site Contacted: 11 Feb 2025 19:18 (12 Days Ago)

Web Portal Data View

Description					/alue		
Chlorine Sensor			0.00 PPM		<u> ~</u>		
Temperature			23 °C				
Signal Strength			-77 dB				
Channel Histo	огу						K7 29
Hide/ Show	Time	Chlorine Sensor	Temperature	Signal Strength	Version		Ī
	24 Feb 2025 06:20	0.00 PPM	23 °C	-77 dB	1.22.0		
	23 Feb 2025 06:19	0.01 PPM	27 °C	-75 dB	1.22.0		
	23 Feb 2025 02:20	0.00 PPM	26 °C	-75 dB	1.22.0		
	22 Feb 2025 22:20	2.10 PPM	29 °C	-73 dB	1.22.0		
	22 Feb 2025 06:19	0.39 PPM	24 °C	-73 dB	1.22.0		
	21 Feb 2025 22:20	0.71 PPM	29 °C	-73 dB	1.22.0		
	21 Feb 2025 18:21	1.14 PPM	29 °C	-73 dB	1.22.0		
	21 Feb 2025 18:20		29 °C	-73 dB	1.22.0		
	21 Feb 2025 06:19	0.70 PPM	26 °C	-75 dB	1.22.0		
	21 Feb 2025 02:20	0.45 PPM	26 °C	-75 dB	1.22.0		
	20 Feb 2025 22:20	1.75 PPM	29 °C	-75 dB	1.22.0		
	20 Feb 2025 06:20	0.90 PPM	21 °C	-75 dB	1.22.0		
	19 Feb 2025 06:20	0.36 PPM	24 °C	-75 dB	1.22.0		
	18 Feb 2025 06:20	0.01 PPM	39 °C	-77 dB	1.22.0		

Data history screen capture

Web Portal Data View

Graph view of data: "X" axis 10 weeks duration, "Y" axis 0-1.2 PPM Red line = 0.5 PPM (alarm threshold)

Additional System Deployments

Discoloration, residue, and corrosion from chlorine emissions

Conclusions

- The toxic gas sensors used are very accurate but require periodic calibration
- The "Report by Exception" monitor systems proved to be flexible and cost-effective in these applications
- Other sensor applications available:
 - Methane (underground gas storage, gas distribution pipelines
 - H2S and SO2 (production fields and gathering systems)
 - CO2 (carbon sequestration sites)
- Project goals were accomplished

Thank You

Questions???

.